
Beak Squad Programming Manual
Release 0.1

Carson Rueter

Nov 23, 2022

CONTENTS

1 Contents 3
1.1 Section 0: WPILib & Vendor installation . 3
1.2 Section 1: Creating a Project . 4
1.3 Section 2: Your First Motor . 6
1.4 Section 3: Servos & Solenoids . 9
1.5 Section 4: Controllers . 11
1.6 Section 5: Encoders . 15
1.7 Section 6: Control - Limits & Sensing . 15
1.8 Section 7: Subsystems . 15
1.9 Section 8: Commands . 15
1.10 Section 9: Dashboards & Debugging . 15
1.11 Section 10: Cameras . 15
1.12 Section 11: PID Control . 15
1.13 The Basics of Wiring & Electronics . 15
1.14 Batteries . 16
1.15 BeakLib . 16

i

ii

Beak Squad Programming Manual, Release 0.1

The Beak Squad Programming Manual (informally known as “Carson Professor”) is a complete Java, WPILib, and
BeakLib how-to, from basic motor control to complete PID, command, and advanced-control robots.

Note: This manual is currently early in development.

CONTENTS 1

Beak Squad Programming Manual, Release 0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Section 0: WPILib & Vendor installation

1.1.1 WPILib

WPILib contains the WPILib Java library itself, several tools like dashboards, debugging utilities, extra robot commu-
nication, tools for system characterization, VS Code, and the JDK.

Instructions for installing WPILib can be found on the WPILib Docs. Ensure to select “Everything” and “Download
for this computer only”.

Additionally, the WPILib installer may be available offline on a flash drive. Ask a veteran member for help.

1.1.2 CTRE

The CTRE Phoenix Framework contains offline copies of the Phoenix library for use in robot projects, as well as the
Phoenix Tuner utility. The Phoenix Tuner utility gives the ability to configure, test, change CAN IDs, and log data from
CTRE’s VictorSPX, TalonSRX, and TalonFX motor controllers.

The Phoenix Framework can be downloaded from CTRE’s GitHub. Download the file for your computer’s hardware,
and run the executable. From there, follow the onscreen instructions.

Additionally, the Phoenix Framework may be available offline on a flash drive. Ask a veteran member for help.

1.1.3 REV

The REV Hardware Client is a utility for configuring, testing, changing CAN IDs, and logging data from REV Spark
MAX motor controllers.

The REV Hardware Client can be downloaded from REV’s website. Download the executable and run it. Follow the
onscreen instructions.

Additionally, the REV Hardware Client may be available offline on a flash drive. Ask a veteran member for help.

Note: The REV Hardware Client is currently only available for Windows.

3

https://docs.wpilib.org/en/stable/docs/zero-to-robot/step-2/wpilib-setup.html
https://github.com/CrossTheRoadElec/Phoenix-Releases/releases/latest
https://docs.revrobotics.com/rev-hardware-client/

Beak Squad Programming Manual, Release 0.1

1.1.4 NI FRC Game Tools

The NI FRC Game Tools contain tools to control, bring up, and run robots from your computer.

Instructions for installing the NI FRC Game Tools can be found on the WPILib Docs.

1.2 Section 1: Creating a Project

1.2.1 Creating a Project

Begin by opening the WPILib VSCode installed in the previous section. This can be done through the start menu (see
below) on Windows, or through Spotlight Search on MacOS.

VSCode may guide you through some initial setup. You can ignore most of this. When you’re done with the setup,
begin by hitting Ctrl+Shift+P (Note: most of the time, on MacOS, replace Ctrl with Command. If this is not the case,
it will be noted.)

This should open up the “Command Palette”. From here, type “create new project”. You should see something akin to
this:

4 Chapter 1. Contents

https://docs.wpilib.org/en/stable/docs/zero-to-robot/step-2/frc-game-tools.html

Beak Squad Programming Manual, Release 0.1

Select this option, and you will be greeted with a “New Project Creator” menu. Begin by selecting a project type.
Select “template”, then “java”, and finally, “Command Robot”. From here, select your base folder; it’s recommended
to create a separate “code” folder somewhere–i.e. in your Documents folder.

The project name can be anything–for now, we can call it “First Project”. Make sure “Create a new folder?” is checked,
and input your team number (i.e. 4028). In the end, your screen should look something like this:

Finally, select “Yes (Current Window)”.

Congratulations! You’ve successfully created your first robot project!

1.2. Section 1: Creating a Project 5

Beak Squad Programming Manual, Release 0.1

1.3 Section 2: Your First Motor

1.3.1 Running Your First Motor

Warning: Make ABSOLUTELY SURE that you are using a Talon SRX motor controller for this! If you try to run
a different motor controller, it will fail. Ask a mentor/teacher for help determining whether or not a motor controller
is a TalonSRX.

Firstly, we want to get into the main robot code. In your file tree on the left, first hit “src”, then “java”. You will see 4
files there, and 2 folders.

Open “Robot.java” by clicking on it. This file contains the main logic for the robot to run all of its code!

Before we create and run our motor, we need to install a “vendor dependency” for CTRE. Vendor dependencies are
libraries developed not by WPILib, but by external “vendors”, who manufacture motor controllers, gyroscopes, etc. In
this case, we are running a CTRE motor controller, so we need the CTRE vendor dependency.

Begin by opening the Command Palette again with Ctrl+Shift+P. Now type in “manage vendor libraries”. You should
see the following:

Select it by pressing enter. Another menu should pop up. Hit “Install new libraries (offline)”. Select “CTRE Phoenix”
and press enter. Select “Yes” to build.

Now, we can begin creating our project! Still in Robot.java, begin by going to the line that says:

private RobotContainer m_robotContainer;

Put your cursor on the end of the line, and press Enter/Return twice. Now, we need to create our motor controller object.

In this case, we are creating a TalonSRX (our motor controller). We can call it anything we want; for the time being,
let’s call it turretMotor. Thus, on our new line, we want to type:

TalonSRX turretMotor;

6 Chapter 1. Contents

Beak Squad Programming Manual, Release 0.1

Note: When you type TalonSRX, a menu will pop up, with the variable name showing up first. Hit “enter” when you
see this, and VSCode will automatically import the needed files to use the TalonSRX class.

Note: In Java and most other programming languages, at the end of each line (or “statement”), we use semicolons (;)
to determine that this is the end of the line. Semicolons are NOT OPTIONAL! When you have an error in your code,
ALWAYS check your semicolons first and foremost!

Note: In Java, almost all variables are named according to “camel case” notation. This specifies that the first “word” of
the name is lowercase, and any subsequent “words” within the variable name have their first letters capitalized. There
are exceptions, such as constants; these will be discussed later.

Your code should look like this:

Note: TODO: Should we use codeblocks or images? Codeblocks are a bit easier to maintain. . .

If your code looks like this, you’re good to move on. Scroll down until you see a “robotInit” function.

Note: teleopInit is the code that runs whenever you start the robot in “tele-operated” mode, shortened to “teleop”,
where in a real robot, the drivers have control over it.

Set your cursor at the end of the line that says m_robotContainer = new RobotContainer();, and hit Enter twice. We
now need to “assign” a value to our motor variable. Assignment is done through the = operator, i.e. variableName =
someValue;.

With this in mind, to assign to our turretMotor object, we must create a new TalonSRX object. The TalonSRX con-
structor takes a single argument; the CAN ID of the motor controller. To determine the CAN ID. . . etc. Phoenix Tuner

1.3. Section 2: Your First Motor 7

Beak Squad Programming Manual, Release 0.1

stuff

In this case, our CAN ID should be 4. Thus, to “instantiate” (i.e. create) the turretMotor, we use:

turretMotor = new TalonSRX(4);

Don’t forget the semicolon!

Your code should now look like this:

Now that we’ve created our motor, it’s time to run it! Scroll down until you find the teleopInit function. Inside of this
function (below the autonomous command stuff), we need to “call” a method within the TalonSRX object.

In this case, the method is <TalonSRX>.set(). The set() method takes two parameters: the control mode (you’ll learn
more about this later), and the “percent output”, a value from -1 to 1, determining how fast the motor should run (0 =
stop, -1/1 = full speed), and which direction (>0 = forward, <0 = reverse).

Begin by making two blank lines after the autonomous command stuff. Then, we need to call the set() function, with
our desired parameters. Begin by typing turretMotor.set. A menu should pop up, with the set method showing up, with
all of its parameters. Press enter to input this in. Now, replace Mode with ControlMode.PercentOutput (ensuring to
import ControlMode), and demand with our target speed. For safety and tutorial reasons, run it low, i.e. 0.2. In the
end, your code should be:

turretMotor.set(ControlMode.PercentOutput, 0.2);

And will look like:

8 Chapter 1. Contents

Beak Squad Programming Manual, Release 0.1

Now, you’ve created your code! It’s time to deploy and run it. First of all, we need to connect to the robot’s radio.
Ensure the robot is turned on (you will see the orange light) and go to your Wi-Fi settings in the bottom right, selecting
the radio (i.e. 4028_SNEED).

picture of radio in wifi tab

Now that we’re connected to the robot, it’s time to deploy the code. Go back to your code, and press Shift+F5. You
may also need to press Fn.

You might get a message saying “Starting a Gradle Daemon”. After some time, you should see something like the
following:

If you see any errors, ensure you’re connected to the robot and that your code doesn’t contain any errors (underlined in
red in your code).

We’ve now successfully deployed our code! Now, it’s time to run it! Open up the FRC Driver Station installed in
section 0. You should see something like this:

picture of driver station with comms

Ensure “TeleOperated” is selected, and press “enable”. The motor should run. If not, ask a veteran member for help.

Congratulations! You’ve written and deployed your first code!

1.4 Section 3: Servos & Solenoids

1.4.1 What are Servos & Solenoids?

Servos are a type of very basic motor. They can have a linear or rotational movement pattern, and are designed to go
to a position (to “servo” to a position) and stay there with high amounts of force. These are typically used for shooter
hoods, or for small-scale, low-power rotation of arms or other limbs.

Solenoids control pneumatics systems. Pneumatics are used to control “cylinders”, which are linear actuators with two
states: fully extended, or fully retracted. Because they use compressed air to transfer force, they can generally provide

1.4. Section 3: Servos & Solenoids 9

Beak Squad Programming Manual, Release 0.1

enough force to move an object that a motor can’t. They are solely used for two-state systems, i.e. an infeed or a hook.

1.4.2 Servos in Code

Servos are extremely simple to use–using them is identical to running a basic motor. First, create your servo variable
at the top of Robot.java:

Servo servoMotor;

Now we instantiate our servo. Much like a motor, the servo constructor takes a single argument: the PWM ID. Check
the RIO’s PWM ports, and trace the servo you want to control to the PWM port it uses, and plug this in (in robotInit):

servoMotor = new Servo(0);

Controlling servos is just like a motor as well, although the “percent output” is really the position to set the servo to.
Servos generally have a hard minimum or maximum position. On 4028, the servos we use generally have a range of
0.2-1.0. Because of this, if you want to go to the “zero” position, you must set the servo to 0.2. In teleopInit:

servoMotor.set(0.2);

Deploy and enable as described in the last section. The servo should be fully retracted after a while.

Now let’s try to fully lengthen it. Replace the 0.2 with 1.0, deploy, and enable. It should go to the fully lengthened
position.

1.4.3 Solenoids in Code

Solenoids are even simpler than servos. They are simple binary actuators: they only have a true and false state. Double
solenoids are slightly different, with forward, reverse, and off states. However, they both accomplish the same thing:
to either retract or extend a pneumatic cylinder (see the Pneumatics link in the sidebar).

As always, create your solenoid variable and instantiate it. At the top of the Robot class:

Solenoid solenoid;

The Solenoid constructor takes two arguments: the pneumatic hub type (this is either PneumaticsModule-
Type.CTREPCM or PneumaticsModuleType.REVPH. Ask a veteran member for help determing which to use), and
the channel. For now, we are only using single solenoids. Trace the solenoid you want to control back to the PCM or
PH, and find its port. Use this port in your constructor (robotInit):

solenoid = new Solenoid(PneumaticsModuleType.CTREPCM, 0);

Replace 0 with the port you determined.

To set a solenoid, we simply call solenoid.set(). This call takes one argument: true or false. The default state of a
solenoid is false; so, to see a difference, you will want to set this to true (teleopInit):

solenoid.set(true);

Now, deploy and enable. You should hear a small click and the solenoid will light up. If pneumatics are hooked up on
your test board, a cylinder should fire as well.

10 Chapter 1. Contents

Beak Squad Programming Manual, Release 0.1

1.4.4 Double Solenoids in Code

Bruh

1.5 Section 4: Controllers

1.5.1 Basic Setup

Controllers do as their namesake: they control things. Ever played video games? You’ve used a controller. Ever used
a keyboard and mouse? You’ve used a controller. In FRC, the controllers we use are similar if not identical to those
found on consoles like Xbox.

But how do we use them?

For simplicity’s sake, we will be using the BeakXboxController class as our wrapper around controllers. The
BeakXboxController class itself wraps around the built-in WPILib class, XboxController, which provides functionality
to use Xbox and Xbox-like controllers for robots. Buttons are mapped properly for an Xbox controller, and generally,
this is how we give commands to the robot.

To start, get the BeakXboxController class. Go to here. In the file that opens, select all and copy. Now, in your robot
folder, create a new folder and call it utilities. From here, right-click on the utilities folder, and click “New File”. Name
the file BeakXBoxController.java (watch your capitalization!), and press enter. Now, delete whatever may be in the new
file, and then press Ctrl+V to paste the BeakXBoxController class. You have successfully created your controller!

1.5.2 Setup in Code

To use the BeakXboxController, we first need to create our controller instance. Go to your RobotContainer.java file,
and in the RobotContainer’s member variable definitions, create a private BeakXboxController, and name it driver-
Controller.

Now, in your RobotContainer constructor, BEFORE configureButtonBindings is called, initialize your driver controller.
The BeakXBoxController constructor takes one argument: the port. Controller ports start at 0, meaning that the “first”
controller is actually port 0. We want to use the first controller, so plug in 0 for your port. Your code should now look
something like this:

1.5. Section 4: Controllers 11

https://raw.githubusercontent.com/Team4028/2023-Drive/master/src/main/java/frc/robot/utilities/BeakXBoxController.java

Beak Squad Programming Manual, Release 0.1

You’ve now set up a controller in code! Let’s use it now.

1.5.3 Usage

You may have learned about inline functions in your Java training. If not, what you need to know is that the basic form
is () -> functionToRun(). Feel free to look up what inline functions are if you need more info. For now, all you need to
know is that we plug this into the controller to run something. So, let’s get started!

First of all, remember back to our previous lessons on servos, solenoids, and motors? Remember how you had to
redeploy code every time you changed a value? Well, in competition, you can’t redeploy code to change values! Thus,
one of the many ways we change values “on-the-fly” is through controllers. For example, you can press one button to
run a servo to a shortened position, and another to run it to an elongated position. That’s exactly what we’ll be doing
here.

To start in code, we first need to stop anything from being done automatically in teleop. Go to Robot.java and remove
all 3 set() calls in teleopInit. We won’t be needing these anymore. Now, remove your definition and initialization of
your servoMotor, and place it into RobotContainer.java. Your RobotContainer should look like this:

12 Chapter 1. Contents

Beak Squad Programming Manual, Release 0.1

Now, how do we control it? We bind it! Binding means effectively mapping a button press to an action to be performed
on the robot. With the BeakXBoxController class, this is easy! Scroll down to the configureButtonBindings method.
This function is where we bind all our buttons.

To bind to a specific button with BeakXBoxController, you can access the buttons themselves, for example, driverCon-
troller.a accesses the A button. To bind a command to that button, call .whenPressed of the button. Now to input your
command, use the inline function notation you just learned about. We’re going to bind the A button to the shortened
position of the servo; thus, we put in () -> servoMotor.set(0.2). Don’t forget your semicolon at the very end of the line.
Your code should look like this:

private void configureButtonBindings() {
driverController.a.whenPressed(() -> servoMotor.set(0.2));

}

If everything looks good, deploy your code. Now, you need to plug in a controller to the driver station, and verify that
the controller is in the correct place. Plug in a controller to your driver station computer (via USB), and open the driver
station. On the left, you will see a USB icon. Press this icon, and you should now see a list, and the first item should
be “0 Controller (Gamepad F310)”. This means it’s plugged in correctly. If the first number is different, click and drag
the controller to the first slot until it says 0. Now, to verify that it works and is in the correct port, press any button on
the controller. In the driver station, the controller should now light up green, like this:

1.5. Section 4: Controllers 13

Beak Squad Programming Manual, Release 0.1

images/sect4/ds-controller.png

Your controller is now good to go. Enable, and you will see that nothing happens. This is normal–there’s nothing
scheduled to happen! To see something happen, press A on your controller, and you will see the servo move to the
retracted position!

But if you press it again, nothing happens. If you want to move it between positions, we need another position to be
bound. Bind B to the fully lengthened position (1.0). Your code should now look like this:

private void configureButtonBindings() {
driverController.a.whenPressed(() -> servoMotor.set(0.2));
driverController.b.whenPressed(() -> servoMotor.set(1.0));

}

Deploy and enable. Press B and it should go to the fully lengthened position. Then, press A, and it’ll go back! This,
fundamentally, is how we manage the state of the robot. We press different buttons, and they do different things. Now,
you have control over whatever you want, without having to redeploy!

Congratulations on your work! Controllers will be used exclusively in the next few modules, so make sure you under-
stand everything. Try out some things on your own. Bind X to some other position. Bind Y to running a motor. Bind
the right bumper (known in code as rb) to toggle the solenoid. The world is your oyster when it comes to controllers!

14 Chapter 1. Contents

Beak Squad Programming Manual, Release 0.1

1.6 Section 5: Encoders

they encode stuff

1.7 Section 6: Control - Limits & Sensing

they sense and limit stuff

1.8 Section 7: Subsystems

they are below the system

1.9 Section 8: Commands

they command stuff to happen

1.10 Section 9: Dashboards & Debugging

they dash stuff to a board

1.11 Section 10: Cameras

they see stuff

1.12 Section 11: PID Control

they control stuff using PID

1.13 The Basics of Wiring & Electronics

1.13.1 Electrical Components & How to Wire Them

PDP, breaker, etc

1.6. Section 5: Encoders 15

Beak Squad Programming Manual, Release 0.1

1.13.2 Types, Gauges, & Uses of Wires

Hi

1.13.3 Safety (and what not to do)

r

1.13.4 Powerpole

crimp be like

1.13.5 Ferrules

crimp be like 2

1.13.6 Fuses

Might not even need this section.

1.14 Batteries

bruh

1.14.1 Usage & Placement

1.14.2 Setting Up & Crimping Batteries

1.14.3 Beaking & Testing Batteries

1.14.4 What’s a “Good” Battery?

MK

1.15 BeakLib

16 Chapter 1. Contents

	Contents
	Section 0: WPILib & Vendor installation
	WPILib
	CTRE
	REV
	NI FRC Game Tools

	Section 1: Creating a Project
	Creating a Project

	Section 2: Your First Motor
	Running Your First Motor

	Section 3: Servos & Solenoids
	What are Servos & Solenoids?
	Servos in Code
	Solenoids in Code
	Double Solenoids in Code

	Section 4: Controllers
	Basic Setup
	Setup in Code
	Usage

	Section 5: Encoders
	Section 6: Control - Limits & Sensing
	Section 7: Subsystems
	Section 8: Commands
	Section 9: Dashboards & Debugging
	Section 10: Cameras
	Section 11: PID Control
	The Basics of Wiring & Electronics
	Electrical Components & How to Wire Them
	Types, Gauges, & Uses of Wires
	Safety (and what not to do)
	Powerpole
	Ferrules
	Fuses

	Batteries
	Usage & Placement
	Setting Up & Crimping Batteries
	Beaking & Testing Batteries
	What’s a “Good” Battery?

	BeakLib

